CATHERINE HUGHES BUILDING PLANNING APPROVAL
MAY 2017

Our new student accommodation scheme for Somerville College, has been awarded planning approval unanimously by Oxford City Council. The project, known as the Catherine Hughes Building, will provide 68 bedrooms, allowing the College to accommodate all their undergraduates on site. This is our third building for Somerville College, further to our work on the ROQ student housing and the extension to the Philip Dowson designed Wolfson building.
The new building has a frontage on to Walton Street, with a Graduate Reading Room at ground floor level. The use of red brick will reflect the neighbouring buildings, with articulated brickwork elements around generous windows to provide a rhythm to the façade. Framed setbacks at third floor level allow the new building to align with key levels on the adjacent Penrose Building and to provide variety to the roof line. Internally, bedrooms are arranged in to clusters with kitchens and circulation spaces utilising direct and borrowed natural light and forming focal points for social activity.
Enabling works, involving the demolition of existing buildings, are due to commence in the next few months, with the main construction expected to start on site at the beginning of 2018.
LARGE-SCALE MODEL MAKING
SEPTEMBER 2014
The use of physical models by architects is well established, and can be seen throughout history as the natural partner to drawings for exhibiting a proposal of the building prior to construction. Within our practice, models are rarely produced as mere presentation pieces, but rather as tools for exploration. This role makes them less precious and complete, with the ability to change and adapt the design following the feedback that the model has initiated.
The type of models that I enjoy most are those of a larger scale, of 1:20 and above where you are able to get your head inside and truly appreciate the space. In addition to the final form of such models, much is learnt through the process of construction. Structure, surfaces and junctions are some of the issues that require resolution during the making of the model. Within our studio space, we have a large area dedicated to model making, which allows for building and display of sizeable pieces.

During our work on a new build private residence in Hampshire, we carried out much of the design work on the external envelope through the use of physical models. They were worked up in increasing scales including a 1:10 piece of the facade. In particular, we were considering the form of the heavy external piers, fascias and cornices against the lighter timber elements that sat within them. We made the model using a similar sequence to the proposed building construction. We put the more solid facade elements in place so that we could begin considering a number of different forms for the timber window framing that sat within. The glazing was again produced in a similar method to the full-scale building, with a timber-framed bay built separately prior to installation in to the existing facade. We fixed these delicately so that removal would be possible.
We worked on a number of iterations of the window form, adapting the frames and constructing new versions when modification was not possible. Each time, the model was left on display within the studio so that everyone in the practice could consider the alternative versions and provide feedback. Once we had a favoured form, we used the same model to illustrate the proposal to the clients for approval.
I believe that such iterative assessments and amendments would only have been possible through the use of a large-scale physical model. Building models is about constructing space, and many of the activities are similar in technique and execution as the construction of a real building. By carrying out these actions in miniature we may appreciate the building as a physical form and understand the three dimensional mass. Building of models is our primary opportunity to test and refine our building form, whilst experiencing and discovering an approximation of the processes that will be required to make it.
Alastair Crockett studied at the University of Bath, University College London and London Metropolitan University. Since joining Niall McLaughlin Architects in 2012 he has worked on the T1 building in King’s Cross; a private residence in Hampshire and the Nazrin Shah Building for Worcester College in Oxford.